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Abstract
A coordinate space approach, based on that used by Efimov, is applied to
three-body systems with contact interactions between pairs of particles. In
systems with nonzero orbital angular momentum or with asymmetric spatial
wavefunctions, the hyperradial equation contains a repulsive 1/r2 potential.
The resulting wavefunctions are used in a renormalization group analysis. This
confirms Griesshammer’s power counting for short-range three-body forces
in these systems. The only exceptions are ones like the 4S channel for three
nucleons, where any derivatives needed in the interaction are found to be
already counted by the scaling with the cut-off.

PACS numbers: 03.65.Nk, 11.10.Hi, 21.45.+v, 21.30.Fe

Effective field theories (EFTs) are now being widely applied to few-nucleon systems, see
[1, 2]. The starting point is usually an organization of the terms in an effective potential
according to naive dimensional analysis (NDA), as originally suggested by Weinberg [3].
This classifies terms according to number of powers of low-energy scales they contain. In
some cases, most notably S-wave nucleon–nucleon scattering, the leading-order (LO) terms
turn out to be unnaturally large. This is a consequence of low-energy bound or virtual states.
It means that the LO terms need to be iterated to all orders in solving the Schrödinger or
Lippmann–Schwinger equation [4–6].

However it is now clear that NDA is not valid in all systems. There can be nonperturbative
effects associated with strong long-range potentials that significantly change the power
counting for short-range interactions. This was first noted in the context of attractive three-
body systems (such as three bosons, or the 2S channel for three nucleons) [7, 8], where the
leading three-body forces must be promoted to LO. More recently, failures of NDA have
been observed in repulsive three-body systems [9], and for nucleon–nucleon scattering in
spin-triplet waves [10, 11]. In the first example, short-range three-body forces in most low
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partial waves are demoted to higher orders than naively expected; in the second, short-range
forces are promoted to lower orders in P- and D-waves. In both cases, the terms in potentials
scale with noninteger anomalous dimensions, and so the standard classification of terms as
LO, next-to-leading order (NLO) etc is no longer convenient.

In this letter I examine repulsive three-body systems using the renormalization group
(RG) approach developed in [12–14]. This provides an independent confirmation of results of
Griesshammer for the power counting in these systems [9]. That work solved the Skorniakov–
Ter-Martirosian equation [15] in momentum space, whereas here I work in coordinate space
following the approach developed by Efimov for attractive three-body systems [16] and
recently extended by Gasaneo and Macek to cases with nonzero angular momentum [17].
I also comment on differences between the counting for derivative interactions in systems with
strong long-range forces compared with the pure short-range case. This corrects the counting
in [9] for the leading three-body force in the 4S channel for three nucleons.

If particles interact only through zero-range forces, then their wavefunctions satisfy the
free Schrödinger equation, except where two of them coincide. The two-body forces can
then be represented by boundary conditions at these points. These boundary conditions form
the basis for Efimov’s approach [16] as well as more recent work in [17–19]. In particular,
Gasaneo and Macek have used this method to find solutions for systems with symmetric spatial
wavefunctions. Here I generalize their results to cover asymmetric cases, such as the spin-
quartet channels for three nucleons. It is convenient to work in hyperspherical coordinates
since the boundary conditions are separable in the limit of infinite two-body scattering length.
The resulting hyperradial equation then has the form of a free radial Schrödinger equation
with a centrifugal-like 1/r2 term whose strength is given by the hyperangular eigenvalue. This
potential determines the form of three-body wavefunctions at small hyperradii, and hence it
controls RG flow of the short-range three-body forces [13, 14].

Sets of relative coordinates for three particles with equal masses are

xi = rk − rj , yi = ri − 1
2 (rj + rk), (1)

where i, j, k are a cyclic permutation of 1, 2, 3, and I have used the traditional ‘odd-man-out’
notation to label the sets. Hyperspherical coordinates can then be defined in terms of these as
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The three-body wavefunction can be decomposed into Faddeev components [20] as
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φi(r, αi, x̂i , ŷi ), (3)

where a factor of 1/(xiyi) has been taken out to simplify the radial parts of the Hamiltonian.
Away from the configurations where two particles coincide, each of these components satisfies
a free Schrödinger equation. In hyperspherical coordinates, this has the form
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Here Ljk denotes the relative angular momentum of the pair jk, and Li the angular momentum
of particle i relative to that pair. If the problem is separable, we can write φi in the form

φi(r, αi, x̂i , ŷi ) = Fi(r)ui(αi)Yl′im
′
i
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(̂yi ), (5)

where Fi(r) and ui(αi) satisfy the ordinary differential equations
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This hyperradial equation looks just like a free radial Schrödinger equation in two dimensions,
with the hyperangular eigenvalue ν2 determining the strength of the centrifugal-like 1/r2 term.
In the cases of interest, where pairs of particles interact only in S-waves, we can simplify the
hyperangular equations by setting l′i = 0 and l1 = l2 = l3 ≡ l. The component φi is then
independent of x̂i .

From the definition of the reduced Faddeev components φi in equation (3), they must
vanish at xi = 0. In hyperspherical coordinates these boundary conditions are

φi

(
r,

π

2
, ŷi

)
= 0. (7)

In the limit of infinite two-body scattering length, the logarithmic derivative of the reduced
wavefunction must vanish whenever two particles coincide and so can interact via the two-body
force [16–19]:
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= 0. (8)

The points where xi = 0 correspond to xj = yi , yj = − 1
2 yi and xk = −yi , yk = − 1

2 yi

in the other relative coordinate systems. In terms of the hyperangular coordinates these are
αj = αk = π

3 . The resulting boundary conditions on the Faddeev components are
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These are separable and lead to the hyperangular conditions
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The symmetries of the spatial wavefunction can be used to simplify these conditions
further. There are two cases of physical interest. The first is a spatial wavefunction that is
symmetric under exchange of any pair of particles. In this case the Faddeev components are
equal:

φ1 = φ2 = φ3 ≡ φ. (11)

This describes three identical bosons, or three fermions with different quantum numbers (spin,
isospin, etc) whose intrinsic state is completely antisymmetric. Most importantly for nuclear
physics this corresponds to three nucleons with total spin 1

2 . The second is where the spatial
wavefunction is antisymmetric under exchange of one pair of particles, but symmetric under
exchange of either of the others. The components are then related by

φ1 = 0, φ2 = −φ3 ≡ φ. (12)

This describes three nucleons with total spin 3
2 . Generically we may write the boundary

conditions in the form
du

dα
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α=0

+ λ(−1)l
8√
3
u
(π

3

)
= 0, (13)

where λ = +1 for completely symmetric spatial wavefunctions and λ = − 1
2 for cases with

one antisymmetric pair.
As noted by Gasaneo and Macek [17], the hyperangular equation for l′ = 0 can be solved

in terms of hypergeometric functions. After defining the new variable z = cos2 α and writing
u(z) = z(l+1)/2v(v), the equation takes the form of the hypergeometric equation [21],

z(1 − z)
d2v

dz2
+ [c − (a + b + 1)z]

dv

dz
− abv = 0, (14)
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with
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2
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The hyperangular eigenfunctions are thus1
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The corresponding radial solutions are just Bessel functions of order ν and so we get
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These vanish at α = 1
2 , as required by the first boundary condition. The other condition,

arising from the contact interactions at xi = 0, then provides an equation for the eigenvalues
ν2. The hypergeometric functions have the properties [21],

∂

∂z
2F1(a, b, c; z) = ab

c
2F1(a + 1, b + 1, c + 1; z), (18)

and for z equal to or close to 1
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(19)

Using these, equation (13) can be expressed in the form
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which matches equation (2.18) of [9], with the substitution of s by ν. It also agrees with the
results of [17] if λ = 1. For symmetric systems (λ = 1) with l = 0 this is the equation first
derived by Danilov [22], which has an imaginary solution for ν. The corresponding hyperradial
wavefunctions show oscillatory behaviour at small distances, and this is responsible for Thomas
[23] and Efimov [16] effects. For l � 1 or systems with one antisymmetric pair, the roots of
the equation are real and can be found in table 2 of [9]. In these cases the 1/r2 potential is
repulsive and so there is no Efimov effect.

Having constructed the wavefunctions for the long-range forces in these systems, we can
now use the methods of [13] to find the RG eigenvalues, which give the power counting for
terms in the short-range potential. In fact for real values of ν, we can immediately use the
results in equation (54) of that paper if we multiply the hyperradial solutions by

√
π/(2pr)

to get functions that satisfy a three-dimensional radial Schrödinger equation. A term in the
rescaled potential proportional to p2n (n powers of the energy) varies with the cut-off 
 as

2(n+ν)p2n and so its RG eigenvalue is

ρ = 2(n + ν). (21)

If we assign 
-independent terms to LO in our expansion of the EFT, then ρ also labels the
order of a term. The leading term in each channel is thus of order 2ν, in agreement with
the results in table 3 of [9], except for the 4S and Wigner-antisymmetric 2S channels, where
Griesshammer adds two extra powers of low-energy scales.

1 Note that I have chosen to write these in the form that will make most direct contact with the results of [9], rather
than the equivalent form given in [17]. Also, the factor of 2 in equation (13) of [17] is incorrect and should be omitted.
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The motivation for adding these two powers is the antisymmetry of the wavefunction in
these channels which prevents all three particles from coinciding. As a result a pure δ-function
interaction has no effect on them; one with at least two derivatives would be needed. For
any finite cut-off, however, a contact interaction becomes nonlocal and so can contribute. In
[9], this happens implicitly through the momentum cut-off. In contrast, [13] does it explicitly
by using a δ-shell form for the short-distance interactions. This was done to ensure that the
interaction has an effect even though the wavefunctions vanish as r → 0 as a result of the
1/r2 potential. For example, the same RG analysis can be applied to two-body scattering
with nonzero angular momentum L by setting ν = L + 1

2 [13]. It shows that the leading
short-distance interaction in this partial wave is of order 2L, as expected from the fact that 2L

derivatives of a δ-function are needed to form a contact interaction that acts in this wave. Note
that these derivatives are already counted by the RG eigenvalue, ρ = 2L + 1.

The wavefunctions in two-body channels with nonzero angular momentum, or in three-
body channels with ν > − 1

2 , satisfy a radial equation of the form

1

r

d2

dr2
(rψ) = −p2ψ +

ν2 − 1
4

r2
ψ. (22)

Acting on one of the wavefunctions where the long-range 1/r2 interaction has been iterated
to all orders, an interaction with two derivatives thus gives rise to two contributions. One
is just proportional to two powers of the low-energy scale p, and so is two orders higher in
the power counting. However the other, proportional to (1/r2)ψ , is of the same order as the
term without those derivatives, since at small distances 1/r is not a low-energy scale. This
second piece is absent if L = 0 (or equivalently ν = 1

2 ). In that more familiar case, additional
derivatives do indeed increase the order of the interaction.

The bottom line is that any derivatives needed to construct appropriate interactions for
the repulsive 1/r2 potentials are already counted in the RG eigenvalue (or by the superficial
degree of divergence in [9]), without any need to add additional powers. But, apart from
this rather minor amendment, the present analysis confirms Griesshammer’s results for the
power counting in repulsive three-body systems [9]. The leading term in each channel has RG
eigenvalue 2ν, where ν2 is the hyperangular eigenvalue. These eigenvalues are not integers
and so the usual classification of terms as NLO etc in the EFT becomes inconvenient. In
most cases this counting demotes short-distance three-body interactions to higher orders than
predicted by NDA, although in some channels there is a small degree of promotion.
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